Perturbing Eisenstein polynomials over local fields

> Kevin Keating Department of Mathematics University of Florida

> > May 25, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_K : K^{\times} \to \mathbb{Z}$, whose residue field \overline{K} is a perfect field of characteristic p. Also let

 $\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : v_{\mathcal{K}}(\alpha) \ge 0 \}$ = ring of integers of \mathcal{K}

 $\pi_{\mathcal{K}} =$ uniformizer for $\mathcal{O}_{\mathcal{K}}$ (i. e., $v_{\mathcal{K}}(\pi_{\mathcal{K}}) = 1$)

$$\mathcal{P}_{\mathcal{K}} = \pi_{\mathcal{K}} \cdot \mathcal{O}_{\mathcal{K}}$$

= unique maximal ideal of $\mathcal{O}_{\mathcal{K}}$

Let K^{sep} be a separable closure of K, and let L/K be a finite totally ramified subextension of K^{sep}/K . Write $[L:K] = n = up^{\nu}$ with $p \nmid u$. Define $\overline{v}_p : \mathbb{Z} \to \mathbb{Z}$ by $\overline{v}_p(h) = \min\{v_p(h), \nu\}$.

Extensions and Power Series

Let $T \subset \mathcal{O}_K$ be the set of Teichmüller representatives for \overline{K} . Let π_K, π_L be uniformizers for K, L, and let

$$\mathcal{G}(X) = a_0 X^n + a_1 X^{n+1} + a_2 X^{n+2} + \cdots$$

be the unique power series with coefficients in T such that $\pi_K = \mathcal{G}(\pi_L)$.

Suppose $\tilde{\pi}_L$ is another uniformizer for L. Let

$$ilde{\mathcal{G}}(X) = ilde{a}_0 X^n + ilde{a}_1 X^{n+1} + ilde{a}_2 X^{n+2} + \cdots$$

be the series with coefficients in T such that $\pi_{K} = \tilde{\mathcal{G}}(\tilde{\pi}_{L})$.

Extensions and Powers Series, continued

Now assume that

$$ilde{\pi}_L \equiv \pi_L + r \pi_L^{\ell+1} \pmod{\mathcal{P}_L^{\ell+2}}$$

for some $\ell \geq 1$, $r \in T$.

Question: For which $i \ge 0$ do we know that $\tilde{a}_i = a_i$?

Write $\pi_L = \psi(\tilde{\pi}_L)$ with $\psi \in T[[X]]$. Then

$$\psi(X) \equiv X - rX^{\ell+1} \pmod{X^{\ell+2}}$$

 $\pi_{\kappa} = \mathcal{G}(\pi_L) = \mathcal{G}(\psi(\tilde{\pi}_L)).$

Suppose char(K) = p. Then $T = \overline{K}$, so $\mathcal{G}(\psi(X)) \in T[[X]]$. It follows that $\tilde{\mathcal{G}}(X) = \mathcal{G}(\psi(X))$.

Extensions and Powers Series (char(K) = p)

Suppose $\overline{v}_p(h) = j$. Then $n + h = wp^j$ for some integer w. Hence $\psi(X)^{n+h} \in \overline{K}[[X^{p^j}]]$ and

$$\psi(X)^{n+h} \equiv (X - rX^{\ell+1})^{n+h} \pmod{X^{n+h+(\ell+1)p^{j}}} \\ \equiv X^{n+h}((1 - rX^{\ell})^{p^{j}})^{w} \pmod{X^{n+h+(\ell+1)p^{j}}} \\ \equiv X^{n+h} - wr^{p^{j}}X^{n+h+\ell p^{j}} \pmod{X^{n+h+(\ell+1)p^{j}}}.$$

It follows from the above that if $i < h + \ell p^{\overline{v}_{\rho}(h)}$ for all $h \ge 0$ such that $a_h \neq 0$ then $\tilde{a}_i = a_i$.

Furthermore, if $i \leq h + \ell p^{\overline{v}_p(h)}$ for all $h \geq 0$ such that $a_h \neq 0$ then we can express \tilde{a}_i as a polynomial in r with coefficients expressed in terms of $\{a_g : g \leq i\}$.

Indices of Inseparability (Fried, Heiermann) Assume char(K) = p. For $0 \le j \le \nu$ define

$$i_j = \min\{h : h \ge 0, a_h \ne 0, \overline{\nu}_p(h) \le j\}.$$

Then i_j does not depend on the choice of π_K or π_L . We say that i_j is the *j*th index of inseparability of L/K. We have $0 = i_{\nu} < i_{\nu-1} \leq \ldots \leq i_1 \leq i_0$.

It follows from the above that if $i < i_j + \ell p^j$ for $0 \le j \le \overline{\nu}_p(i)$ then $\tilde{a}_i = a_i$.

For $0 \le j \le \nu$ define

$$\begin{split} \tilde{\phi}_j(x) &= i_j + p^j x \ \phi_j(x) &= \min\{\tilde{\phi}_{j'}(x) : 0 \leq j' \leq j\}. \end{split}$$

Let $i \ge 0$ and set $\overline{v}_p(i) = j$. If $i < \phi_j(\ell)$ then $\tilde{a}_i = a_i$.

What if char(K) = 0?

Suppose char(K) = 0. For $0 \le j \le \nu$ define

$$i_{j}^{\pi_{L}} = \min\{h : h \ge 0, \ a_{h} \ne 0, \ \overline{v}_{p}(h) \le j\}$$
$$i_{j} = \min\{i_{j'}^{\pi_{L}} + (j' - j)v_{L}(p) : j \le j' \le \nu\}.$$

Then $i_j^{\pi_L}$ may depend on the choice of π_L (but not on π_K), but i_j depends only on the extension L/K.

The functions $\tilde{\phi}_j$ and ϕ_j are defined as in the characteristic-p case. Once again, if $\overline{\nu}_p(i) = j$ and $i < \phi_j(\ell)$ then $\tilde{a}_i = a_i$.

Theorem (Fried, Heiermann): For $x \ge 0$ we have

$$\phi_{L/K}(x) = \frac{1}{n} \cdot \phi_{\nu}(x).$$

An Example

Let $K = \mathbb{F}_3((t))$ and let L/K be a totally ramified extension of degree 9. Suppose π_L is a uniformizer for L such that $t = \mathcal{G}(\pi_L)$ with

$$\mathcal{G}(X) = X^9 + X^{27} - X^{42} - X^{48} + X^{49} + \cdots$$

Then

$$i_0 = 49 - 9 = 40$$

 $i_1 = 42 - 9 = 33$
 $i_2 = 9 - 9 = 0.$

The Hasse-Herbrand function for the example can be deduced from the indices of inseparability:

$\phi_{L/K}$ for the Example

・ロト ・聞ト ・ヨト ・ヨト

æ

Powers Series and Eisenstein Polynomials

Let π_L be a uniformizer for L and let

$$f(X) = X^{n} - c_{1}X^{n-1} + \dots + (-1)^{n-1}c_{n-1}X + (-1)^{n}c_{n}$$

be the minimum polynomial of π_L over K. Then f(X) is the Weierstrass polynomial of the series $\mathcal{G}(X) - \pi_K$.

The series $\mathcal{G}(X) \in T[[X]]$ such that $\mathcal{G}(\pi_L) = \pi_K$ can be computed iteratively from f(X) (using Newton's method if char(K) = p).

For every $i \ge n$, knowing $\mathcal{G}(X)$ modulo X^i is equivalent to knowing $c_{n-h}\pi_L^h$ modulo π_L^i for $1 \le h \le n$. (In fact, each of these is equivalent to knowing the \mathcal{O}_K -algebra $\mathcal{O}_L/\mathcal{P}_I^i$.)

Indices of Inseparability via Eisenstein Polynomials

Let π_L be a uniformizer for L, and let

$$f(X) = X^{n} - c_{1}X^{n_{1}} + \dots + (-1)^{n-1}c_{n-1}X + (-1)^{n}c_{n}$$

be the minimum polynomial for π_L over K.

For $0 \leq j \leq \nu$ we have

$$i_{j}^{\pi_{L}} = \min\{v_{L}(c_{h}\pi_{L}^{n-h}): 0 \leq h < n, v_{p}(n-h) \leq j\} - n$$

$$i_{j} = \min\{i_{j'}^{\pi_{L}} + (j'-j)v_{L}(p): j \leq j' \leq \nu\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Problem

Let L/K be a finite separable totally ramified subextension of K^{sep}/K of degree [L : K] = n. Let π_L be a uniformizer for L and let

$$f(X) = X^{n} - c_{1}X^{n-1} + \dots + (-1)^{n-1}c_{n-1}X + (-1)^{n}c_{n}$$

be the minimum polynomial of π_L over K. Let $\ell \ge 1$, let $r \in \mathcal{O}_K$, and let $\tilde{\pi}_L$ be another uniformizer for L such that $\tilde{\pi}_L \equiv \pi_L + r \pi_L^{\ell+1} \pmod{\mathcal{P}_L^{\ell+2}}$. Let

$$\tilde{f}(X) = X^n - \tilde{c}_1 X^{n-1} + \dots + (-1)^{n-1} \tilde{c}_{n-1} X + (-1)^n \tilde{c}_n$$

be the minimum polynomial of $\tilde{\pi}_L$ over K. We wish to obtain congruences for the coefficients \tilde{c}_i of $\tilde{f}(X)$ in terms of ℓ , r, and the coefficients of f(X).

Krasner's Work

Krasner (1937) showed that for $1 \le h \le n$ we have

$$\tilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^{\kappa_h(\ell)}},$$

where $\kappa_h(\ell) = \lceil \varphi_{L/K}(\ell) + \frac{h}{n} \rceil$.

We prove that

$$ilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^{
ho_h(\ell)}}$$

for certain integers $\rho_h(\ell)$ such that $\rho_h(\ell) \geq \kappa_h(\ell)$.

Let *h* be the unique integer such that $1 \le h \le n$ and *n* divides $n\varphi_{L/K}(\ell) + h$. Krasner gave a formula for the congruence class modulo $\mathcal{P}_{K}^{\kappa_{h}(\ell)+1}$ of $\tilde{c}_{h} - c_{h}$. We give similar formulas for up to $\nu + 1$ values of *h*.

A Theorem

Let
$$1 \le h \le n$$
 and set $j = \overline{v}_p(h)$. Define
 $\rho_h(\ell) = \left\lceil \frac{\varphi_j(\ell) + h}{n} \right\rceil$

Let π_L , $\tilde{\pi}_L$ be uniformizers for L and let

$$f(X) = X^{n} - c_{1}X^{n-1} + \dots + (-1)^{n-1}c_{n-1}X + (-1)^{n}c_{n}$$

$$\tilde{f}(X) = X^{n} - \tilde{c}_{1}X^{n-1} + \dots + (-1)^{n-1}\tilde{c}_{n-1}X + (-1)^{n}\tilde{c}_{n}$$

be the minimum polynomials for π_L , $\tilde{\pi}_L$ over K.

Theorem 1: Suppose $\tilde{\pi}_L \equiv \pi_L \pmod{\mathcal{P}_L^{\ell+1}}$ for some $\ell \geq 1$. Then $\tilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^{\rho_h(\ell)}}$ for $1 \leq h \leq n$.

Another Theorem

Theorem 2: For $0 \le m \le \nu$ write the *m*th index of inseparability of L/K in the form $i_m = A_m n - b_m$ with $1 \le b_m \le n$. Suppose there are $\ell \ge 1$ and $r \in \mathcal{O}_K$ with

$$ilde{\pi}_L \equiv \pi_L + r \pi_L^{\ell+1} \pmod{\mathcal{P}_L^{\ell+2}}.$$

Let $0 \le j \le \nu$ be such that $\overline{\nu}_p(\varphi_j(\ell)) = j$, and let h be the unique integer such that $1 \le h \le n$ and n divides $\varphi_j(\ell) + h$. Set $k = (\varphi_j(\ell) + h)/n$ and $h_0 = h/p^j$. Then

$$ilde{c}_h \equiv c_h + \sum_{m \in S_j} g_m c_n^{k-A_m} c_{b_m} r^{p^m} \pmod{\mathcal{P}_K^{k+1}},$$

where . . .

Theorem 2, continued

-

$$S_{j} = \{m : 0 \le m \le j, \varphi_{j}(\ell) = \tilde{\varphi}_{m}(\ell)\}$$

$$g_{m} = \begin{cases} (-1)^{k+\ell+A_{m}}(h_{0}p^{j-m} + \ell - up^{\nu-m}) & \text{if } b_{m} < h \\ (-1)^{k+\ell+A_{m}}(h_{0}p^{j-m} + \ell) & \text{if } h \le b_{m} < n \\ (-1)^{k+\ell+A_{m}}up^{\nu-m} & \text{if } b_{m} = n. \end{cases}$$

An Example

Let K be a finite extension of the 3-adic field \mathbb{Q}_3 such that $v_{\mathcal{K}}(3) \geq 2$. Let

$$f(X) = X^9 - c_1 X^8 + \dots + c_8 X - c_9$$

be an Eisenstein polynomial over K such that $v_K(c_2) = v_K(c_6) = 2$, $v_K(c_h) \ge 2$ for $h \in \{1,3\}$, and $v_K(c_h) \ge 3$ for $h \in \{4,5,7,8\}$. Let π_L be a root of f(X). Then $L = K(\pi_L)$ is a totally ramified extension of K of degree 9, so we have u = 1, $\nu = 2$. It follows from our assumptions about the valuations of the coefficients of f(X) that the indices of inseparability of L/K are $i_0 = 16$, $i_1 = 12$, and $i_2 = 0$. Therefore $A_0 = 2$, $A_1 = 2$, $A_2 = 1$, and $b_0 = 2$, $b_1 = 6$, $b_2 = 9$. We get the following values for $\tilde{\varphi}_j(\ell)$ and $\varphi_j(\ell)$:

Example (Theorem 1)

l	$ ilde{arphi}_0(\ell)$	$ ilde{arphi}_1(\ell)$	$ ilde{arphi}_2(\ell)$	$\varphi_0(\ell)$	$\varphi_1(\ell)$	$\varphi_2(\ell)$
0	16	12	0	16	12	0
1	17	15	9	17	15	9
2	18	18	18	18	18	18
3	19	21	27	19	19	19

Now let $\tilde{\pi}_L$ be another uniformizer for L, with minimum polynomial

$$ilde{f}(X)=X^9- ilde{c}_1X^8+\dots+ ilde{c}_8X- ilde{c}_9.$$

Suppose $\tilde{\pi}_L \equiv \pi_L \pmod{\mathcal{P}_L^2}$. Then by Theorem 1 and the table above we get

$$\widetilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^2} \text{ for } h \in \{1,3,9\},$$

$$\widetilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^3} \text{ for } h \in \{2,4,5,6,7,8\}.$$

Example (Theorem 2)

Suppose $\tilde{\pi}_L \equiv \pi_L + r\pi_L^2 \pmod{\mathcal{P}_L^3}$, with $r \in \mathcal{O}_K$. By the table above we get $\overline{v}_3(\varphi_0(1)) = 0$, $\overline{v}_3(\varphi_1(1)) = 1$, $\overline{v}_3(\varphi_2(1)) = 2$ and $S_0 = \{0\}$, $S_1 = \{1\}$, $S_2 = \{2\}$. The corresponding values of h are 1, 3, 9, so we have $h_0 = 1$, k = 2 in all three cases.

By applying Theorem 2 with $\ell = 1$, j = 0, 1, 2 we get the following congruences:

$$\begin{split} \tilde{c}_1 &\equiv c_1 + (-1)^{2+1+2} (1+1) c_2 r \pmod{\mathcal{P}_K^3} \\ &\equiv c_1 - 2 c_2 r \pmod{\mathcal{P}_K^3} \\ \tilde{c}_3 &\equiv c_3 + (-1)^{2+1+2} (1+1) c_6 r^3 \pmod{\mathcal{P}_K^3} \\ &\equiv c_3 - 2 c_6 r^3 \pmod{\mathcal{P}_K^3} \\ \tilde{c}_9 &\equiv c_9 + (-1)^{2+1+1} c_9^2 r^9 \pmod{\mathcal{P}_K^3} \\ &\equiv c_9 + c_9^2 r^9 \pmod{\mathcal{P}_K^3}. \end{split}$$

Symmetric Polynomials and Extensions

For $1 \leq h \leq n$ let $e_h(X_1,\ldots,X_n) = \sum_{1 \leq t_1 < \ldots < t_h \leq n} X_{t_1} X_{t_2} \ldots X_{t_h}$

be the *h*th elementary symmetric polynomial in *n* variables.

Define $E_h : L \to K$ by $E_h(\alpha) = e_h(\sigma_1(\alpha), \dots, \sigma_n(\alpha))$, where $\sigma_1, \dots, \sigma_n$ are the K-embeddings of L into K^{sep} . Then $e_1(X_1, \dots, X_n) = X_1 + \dots + X_n \Rightarrow E_1(\alpha) = \operatorname{Tr}_{L/K}(\alpha)$ $e_n(X_1, \dots, X_n) = X_1 X_2 \dots X_n \Rightarrow E_n(\alpha) = \operatorname{N}_{L/K}(\alpha)$ Suppose $L = K(\alpha)$ and $f_\alpha(X) = X^n + \sum_{h=1}^n (-1)^h b_h X^{n-h}$ is the minimum polynomial for α over K. Then $E_h(\alpha) = b_h$.

Monomial Symmetric Polynomials

Let $\mu = (\mu_1, \dots, \mu_h)$ be a partition of some positive integer w into $h \leq n$ parts.

View μ as a multiset, and let μ' be the sum of μ with the multiset consisting of n - h copies of 0.

The monomial symmetric polynomial in n variables associated to μ is

$$m_{\mu}(X_1,\ldots,X_n)=\sum_{\omega}X_1^{\omega_1}X_2^{\omega_2}\ldots X_n^{\omega_n},$$

where the sum is taken over all distinct permutations $\boldsymbol{\omega} = (\omega_1, \dots, \omega_n)$ of $\boldsymbol{\mu}'$.

For
$$\alpha \in L$$
 set $M_{\mu}(\alpha) = m_{\mu}(\sigma_1(\alpha), \ldots, \sigma_n(\alpha)) \in K$.

Monomial and Elementary Symmetric Polynomials

An element $\alpha \in \mathcal{P}_L$ can be expressed in the form $\alpha = r_1 \pi_L + r_2 \pi_L^2 + \cdots$ with $r_i \in \mathcal{O}_K$.

Therefore if $z \in E_h(\mathcal{P}_L)$ then z is a sum of terms of the form $r_{\mu_1}r_{\mu_2}\ldots r_{\mu_h}M_{\mu}(\pi_L)$, where $\boldsymbol{\mu} = (\mu_1,\ldots,\mu_h)$ is a partition with h parts.

 $m_{\mu}(X_1, \ldots, X_n)$ can be expressed as a polynomial in e_1, e_2, \ldots, e_n :

$$m_{\mu} = \sum_{\lambda} d_{\lambda\mu} \cdot e_{\lambda_1} e_{\lambda_2} \dots e_{\lambda_k},$$

where $d_{\lambda\mu} \in \mathbb{Z}$ and the sum is taken over all partitions $\lambda = (\lambda_1, \dots, \lambda_k)$ of $w := \mu_1 + \dots + \mu_h$ such that $\lambda_i \leq n$. Hence $M_{\mu}(\pi_L) = \sum_{i=1}^{n} d_{\lambda\mu} \cdot c_{\lambda_1} c_{\lambda_2} \dots c_{\lambda_k}$.

Two Lemmas

For a partition $\lambda = {\lambda_1, ..., \lambda_k}$ whose parts are $\leq n$ define $c_{\lambda} = c_{\lambda_1} c_{\lambda_2} ... c_{\lambda_k}$.

Lemma 1: Let $w \ge 1$ and let $\lambda = \{\lambda_1, \ldots, \lambda_k\}$ be a partition of w whose parts satisfy $1 \le \lambda_i \le n$. Choose q to minimize $\overline{v}_p(\lambda_q)$ and set $t = \overline{v}_p(\lambda_q)$. Then $v_L(c_\lambda) \ge i_t^{\pi_L} + w$.

Let $w \ge 1$ and let λ be partition of w. For $k \ge 1$ let $k * \lambda$ be the partition of kw which is the multiset sum of k copies of λ , and let $k \cdot \lambda$ be the partition of kw obtained by multiplying the parts of λ by k.

Lemma 2: Let $t \ge j \ge 0$, let $w' \ge 1$, and set $w = w'p^t$. Let λ' be a partition of w' and set $\lambda = p^t \cdot \lambda'$. Let μ be a partition of w such that there does not exist a partition μ' with $\mu = p^{j+1} * \mu'$. Then p^{t-j} divides $d_{\lambda\mu}$.

Proving Theorem 1

Assume $\tilde{\pi}_L = \pi_L + r \pi_L^{\ell+1}$, with $r \in \mathcal{O}_K$. Let $1 \le h \le n$ and set $j = \overline{v}_p(h)$. For $0 \le s \le h$ let μ_s be the partition of $\ell s + h$ consisting of h - s copies of 1 and s copies of $\ell + 1$. Then

$$\tilde{c}_h = E_h(\tilde{\pi}_L) = \sum_{s=0}^h M_{\mu_s}(\pi_L) r^s = c_h + \sum_{s=1}^h M_{\mu_s}(\pi_L) r^s$$

To prove that $\tilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^{\rho_h(\ell)}}$ it's enough to show that $v_K(M_{\mu_s}(\pi_L)) \ge \rho_h(\ell)$ for $1 \le s \le h$.

For this it suffices to show that $v_L(d_{\lambda\mu_s}c_{\lambda}) \ge \varphi_j(\ell) + h$ for all $1 \le s \le h$ and all partitions λ of $\ell s + h$ whose parts are $\le n$.

Proving Theorem 1, continued

Let $1 \leq s \leq h$, set $j = \overline{\nu}_p(h)$, and set $m = \min\{j, \overline{\nu}_p(s)\}$. Then $m \leq j$ and $s \geq p^m$. Let $\lambda = \{\lambda_1, \ldots, \lambda_k\}$ be a partition of $\ell s + h$ such that $1 \leq \lambda_i \leq n$ for $1 \leq i \leq k$. Choose q to minimize $\overline{\nu}_p(\lambda_q)$ and set $t = \overline{\nu}_p(\lambda_q)$. By Lemma 1 we get $\nu_L(c_\lambda) \geq i_t^{\pi_L} + \ell s + h$.

Suppose m < t. Then $m < \nu$, so we have $p^{m+1} \nmid \operatorname{gcd}(h-s,s)$. It follows from Lemma 2 that $v_p(d_{\lambda\mu_s}) \ge t - m$. Thus

$$egin{aligned} & \mathsf{v}_L(d_{\lambda\mu_s}c_\lambda) = \mathsf{v}_L(d_{\lambda\mu_s}) + \mathsf{v}_L(c_\lambda) \ & \geq (t-m)\mathsf{v}_L(p) + i_t^{\pi_L} + \ell s + h \ & \geq i_m + \ell p^m + h. \end{aligned}$$

Proving Theorem 1, conclusion

Suppose $m \ge t$. Then

$$egin{aligned} & \mathsf{v}_{\mathsf{L}}(d_{\lambda\mu_s}c_{\lambda}) \geq \mathsf{v}_{\mathsf{L}}(c_{\lambda}) \ & \geq i_t^{\pi_{\mathsf{L}}} + \ell s + h \ & \geq i_t + \ell p^m + h \ & \geq i_m + \ell p^m + h. \end{aligned}$$

In both cases we get

$$v_L(d_{\lambda\mu_s}c_{\lambda}) \geq \tilde{\varphi}_m(\ell) + h \geq \varphi_j(\ell) + h,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and hence $\tilde{c}_h \equiv c_h \pmod{\mathcal{P}_K^{\rho_h(\ell)}}$.